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Abstract

The first-order or Blatter-Pattyn ice sheet model is an attractive alternative to the full
Stokes model in many applications because of its reduced computational demands, in
spite of an approximate stress tensor and a limitation to small basal boundary slopes.
In contrast, the full unapproximated Stokes ice sheet model is more difficult to solve and5

computationally more expensive. This is due to the fact that while both models arise
from a variational principle, the Blatter-Pattyn variational functional is positive-definite
and involves just the horizontal velocity components, while the Stokes functional is in-
definite and involves all three velocity components, as well as the pressure. These
unfavorable properties arise because Stokes flow is treated as a constrained mini-10

mization problem where the pressure acts as a Lagrange multiplier that enforces in-
compressibility or zero velocity divergence. To alleviate these problems we reformulate
the full-Stokes problem as an unconstrained, positive-definite minimization problem,
quite analogous to the Blatter-Pattyn model but without the associated approximations,
by introducing a velocity field that is already divergence-free and satisfies appropriate15

boundary conditions, thus dispensing with the need for a pressure. Such a velocity field
is obtained by vertically integrating the continuity equation to obtain the vertical veloc-
ity as a function of the horizontal velocity components, as is done in the Blatter-Pattyn
model. This leads to a reduced system for just the horizontal velocity components,
again just as in the Blatter-Pattyn model. We thus obtain not only a reformulated action20

principle, which itself is sufficient for obtaining an efficient discrete model, but also a
novel set of Euler-Lagrange partial differential equations and boundary conditions that
specify the Stokes problem in terms of just the horizontal velocities. The derivations
are performed not only for the common case of an ice sheet in contact with and sliding
along the bed, which again is analogous to the Blatter-Pattyn model, but also for more25

general situations, such as for a floating ice shelf.
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1 Introduction

The most general and accurate model currently used for the simulation of ice sheet
dynamics is based on non-Newtonian Stokes flow (e.g., Greve and Blatter, 2009). At
present, however, a full-Stokes model presents formidable challenges for large-scale
ice sheet modeling, although such models exist and are being used (e.g., Zwinger and5

Moore, 2009, implemented in the ELMER (http://www.csc.fi/english/pages/elmer) code
package). As a consequence, there is considerable interest in various approximate
models (e.g., the first order or Blatter-Pattyn approximation, and the shallow ice and
shallow shelf approximations) that are more limited but computationally far cheaper
than the full-Stokes model (e.g., Pattyn et al., 2008).10

In Dukowicz et al. (2010) and Dukowicz et al. (2011) (henceforth referred to as
DPL1 and DPL2, respectively) it was shown that non-Newtonian Stokes flow, including
the boundary conditions, may be expressed as a constrained variational principle ex-
pressed in terms of an action AS [ui ,P,Λ] whose the arguments represent the functions
with respect to which a stationary point is to be found. These arguments are composed15

of ui ∈ {u,v,w}, the components of the three-dimensional velocity vector, and two La-
grange multipliers, the “pressures” P and Λ, that are used to enforce incompressibility,
∂ui
/
∂xi = 0, and the no-penetration constraint at a fixed, rigid basal surface, uini = 0,

respectively. Here, xi ∈ {x,y,z} is the position vector, and ni is the outward-pointing
unit vector at the ice sheet bounding surfaces. Note that Cartesian tensor notation is20

being used, and, where appropriate, the summation convention on repeated indices.
In general, tensor indices are three-dimensional, i.e., i ,j,··· ∈ {x,y,z}, except when an
index appears in parentheses, in which case it denotes an index in the horizontal plane
only, e.g., (i ),(j ),··· ∈ {x,y}, so that, for example, u(i ) ∈ {u,v}, uiui = u2 + v2 +w2 and

u(i )u(i ) =u2+v2.25
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Neglecting Λ for the moment, the discrete Euler-Lagrange equations resulting from
the variational principle may be expressed in matrix form as follows[

A G
GT 0

][
ui
P

]
=
[
bi
q

]
, (1)

where A=AT is a square, symmetric, positive-definite matrix representing the negative
of the discrete nonlinear stress divergence operator in the momentum equations, G is5

the negative of the discrete gradient operator, and GT is the discrete divergence oper-
ator. The right hand side contains contributions from gravitational forces and boundary
conditions. The system matrix on the left hand side of Eq. (1) is symmetric but indefi-
nite, meaning that the eigenvalues are real but have both positive and negative values.
The solution [ui ,P ]T is therefore at a saddle point of the action AS [ui ,P ]. This is an10

example of the so-called “saddle point” problem that typically arises, as in this case,
from a constrained optimization problem. There are two main difficulties in the solu-
tion of such problems. First, the discretization of the action that resulted in Eq. (1),
and also the choice of basis functions for the pressure and velocity in particular, have
to be done carefully so that the discrete problem has a “good” solution (this involves15

satisfying the so-called Brezzi-Babuska condition). Secondly, large-scale saddle point
problems are typically solved using Krylov subspace methods (conjugate gradient-type
algorithms). Unfortunately, in this case such methods tend to converge slowly, and may
even fail, so it is necessary to find and apply a good preconditioner to achieve reason-
able convergence. In fact, there is a voluminous literature on appropriate methods for20

the numerical solution of saddle point problems (see Benzi et al., 2005, and Benzi and
Wathen, 2008, for example).

In glaciology, these difficulties have typically been avoided by approximating the
Stokes model to obtain the so-called first-order model, otherwise called the Blatter-
Pattyn model, first introduced by Blatter (1995) and refined by Pattyn (2003). The25

Blatter-Pattyn model is obtained by assuming that the ratio of the characteristic vertical
and horizontal length scales in the ice sheet velocity field is small, i.e., a small aspect
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ratio approximation, allowing for the approximation/neglect of the mixed horizontal-
vertical stress tensor components (which has been justified by a rigorous scale anal-
ysis; see Schoof and Hindmarsh, 2010). As a result, it becomes possible to vertically
integrate the vertical momentum equation to obtain pressure as a function of the ver-
tical velocity, P = P (w), and the continuity equation to obtain the vertical velocity as5

a function of the horizontal velocity components, w =w
(
u(i )
)

(see Pattyn, 2003, or
DPL1). This allows the elimination of both the pressure and vertical velocity from the
approximated Stokes model to obtain a reduced system in terms of the horizontal ve-
locity components only. The resulting system is derivable from a positive-definite action
ABP
[
u(i )
]

(Schoof, 2010; DPL1), which may be expressed in matrix form as follows10

Ãu(i ) =b(i ), (2)

where Ã = ÃT is a square, symmetric, positive-definite matrix of reduced rank com-
pared to matrix A in Eq. (1). In contrast to Eq. (1), the system corresponding to Eq. (2)
represents the minimization of a positive-definite action and is therefore amenable to
solution by Krylov subspace methods (Knoll and Keyes, 2004) or even by direct numer-15

ical optimization methods (Nocedal and Wright, 2006). Therefore, and also because
of its reduced rank, the Blatter-Pattyn system, Eq. (2), is much easier to solve than the
full Stokes system, Eq. (1). However, the Blatter-Pattyn model is more limited in appli-
cations than the full-Stokes model (e.g., see the discussion and results in Pattyn et al.,
2008). This is because of the small aspect ratio approximation employed in the Blatter-20

Pattyn model, and, in addition, because of a further approximation implicitly built in to
the Blatter-Pattyn model, limiting it to small basal slopes,

∣∣∂zb
/
∂x(i )

∣∣�1 (see DPL2).
In the present paper we make the observation that there is no need for the Lagrange

multipliers P and Λ if one already has a velocity field that satisfies both continuity and
the basal no-penetration boundary condition. Such a velocity field is available, at least25

in principle, from vertically integrating the continuity equation to obtain w =w
(
u(i )
)
, as

in the Blatter-Pattyn model. Substituting this into the Stokes action, AS [ui ,P,Λ], we
obtain the “reformulated Stokes” action, as follows
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ARS
[
u(i )
]
=AS

[
u(i ),w

(
u(i )
)
,P =0,Λ=0

]
, (3)

which, together with w =w
(
u(i )
)

forms a complete specification of the Stokes problem.
Note the following properties: (a) the action ARS

[
u(i )
]

is exactly equivalent to the Stokes
action, as indicated in Eq. (3), (b) since both Lagrange multipliers are set to zero, the5

reformulated action is positive-definite, just as in the Blatter-Pattyn model, and (c) this
action leads to a matrix system of exactly the same form as Eq. (2). The resulting
matrix system, therefore, has exactly the same beneficial properties as the Blatter-
Pattyn system, Eq. (2), except that now there are no approximations as there are in the
Blatter-Pattyn system.10

It is interesting to note that Pattyn (2008) presents a reformulation of the full-Stokes
model that superficially also resembles the Blatter-Pattyn model. However, this refor-
mulation basically amounts to expressing the pressure P in terms of an alternative
variable, the vertical stress component τzz, and it leads to an iteration scheme that is
effectively equivalent to the solution of the system in the form of Eq. (1).15

In the remainder of the paper we review the basic Stokes problem in Sect. 2, making
the simplifying assumption that the ice sheet is in contact with and sliding along a
rigid, fixed bed, as in DPL2 and elsewhere in the literature. In Sect. 3 we generalize
the basal boundary condition to allow for a moving basal surface and the possibility of
mass flux across the surface, as at the base of a floating ice shelf, thus generalizing the20

expression for the vertical velocity, w =w
(
u(i )
)
. In Sect. 4 we obtain the reformulated

Stokes action ARS
[
u(i )
]
, and finally, in Sect. 5 we obtain the corresponding reformulated

Euler-Lagrange partial differential equations and boundary conditions.
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2 The basic Stokes model

We begin with the variational principle for the non-Newtonian ice sheet Stokes model
whose action functional (see DPL2) is given by

AS [ui ,P,Λ]=
∫
V
dV
(
Gn

(
ε̇2
)
−ρgiui −P

∂ui

∂xi

)
+
∫
S (b)

dS
(
Λuini −Σj (u)nj

)
, (4)

where gi is the gravitational acceleration vector, (typically gi = (0,0,−g)), ρ is the ice5

density, assumed constant, and ε̇2 = ε̇i j ε̇i j is the second invariant of the full Stokes
strain-rate tensor,

ε̇i j =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
,

such that, expanded in Cartesian coordinates, we have

ε̇2 =
(
∂u
∂x

)2

+
(
∂v
∂y

)2

+
(
∂w
∂z

)2

+
1
2

[(
∂u
∂y

+
∂v
∂x

)2

+
(
∂u
∂z

+
∂w
∂x

)2

+
(
∂v
∂z

+
∂w
∂y

)2
]
. (5)10

We define

Gn

(
ε̇2
)
=

2n
n+1

µn

(
ε̇2
)
ε̇2, (6)

where

µn

(
ε̇2
)
=µ0(θ)

(
ε̇2
)(1−n)/2n

, (7)

is the Glen’s law viscosity coefficient, typically used with exponent n= 3, and µ0(θ) is15

a temperature-dependent coefficient. As mentioned previously, the functional, Eq. (4),
represents a constrained minimization principle, with the constraints enforced by two
Lagrange multipliers, P and Λ. As in DPL1 and DPL2, we illustrate the effect of basal
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stress forces by Σj (u)=−βuiuinj
/

2, which represents a linear frictional sliding law with
a constant coefficient β; β≥0. However, other frictional laws are easily accommodated
as in Schoof (2010), for example. The two integrals are assumed to be over the entire
ice sheet volume and the basal surface, respectively.

The variational principle states that the solution of this dynamical system in terms5

of the arguments, i.e., the velocity components ui and pressures P and Λ, is to be
found at the stationary point of the action, Eq. (4), obtained by setting the functional
derivatives with respect to the arguments equal to zero, as follows

δAS

δui
=0,

δAS

δP
=0,

δAS

δΛ
=0. (8)

This yields the following Euler-Lagrange equations:10

a. a three-dimensional momentum equation,

∂σi j

∂xj
+ρgi =

∂τi j
∂xj

− ∂P
∂xi

+ρgi =0, (9)

where σi j = τi j −P δi j is the Cauchy stress tensor and τi j =2µn(ε̇2)ε̇i j is the devi-
atoric stress tensor,

b. the continuity equation for incompressible flow,15

∂ui

∂xi
=0, (10)

and the following boundary conditions,

c. a stress-free boundary conditions over the upper surface S (s), specified at any
instant of time by z= zs (x,y,t):
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σi jn
(s)
j = τi jn

(s)
j −P n(s)

i = τi jn
(s)
j =0, (11)

i.e., setting P =0 at the upper surface, and

d. a frictional sliding boundary condition along a rigid basal surface S (b), specified
by z= zb (x,y):

u(b)
i n(b)

i =0, (12)5

τi jn
(b)
j −

(
n(b)
k τkjn

(b)
j

)
n(b)
i +βu(b)

i =0. (13)

The unit normal vectors that appear here are defined as follows

n(s)
j =

(
n(s)
x , n(s)

y , n(s)
z

)T
=

(
−∂zs

/
∂x,−∂zs

/
∂y,1

)T√
1+
(
∂zs
/
∂x
)2+(∂zs

/
∂y
)2 , (14)

n(b)
j =

(
n(b)
x , n(b)

y , n(b)
z

)T
=

(
∂zb
/
∂x,∂zb

/
∂y,−1

)T√
1+
(
∂zb
/
∂x
)2+(∂zb

/
∂y
)2 . (15)

For clarity, we shall employ superscripts (s) and (b), and subscripts s and b, to10

indicate an upper surface or basal value, respectively, particularly in those cases
where confusion is possible. For concreteness, we have assumed a simplified
ice sheet configuration illustrated in Fig. 1 that is subject to boundary conditions,
Eqs. (11–12), namely, an upper surface entirely exposed to the atmosphere and a
basal surface that is entirely in contact with and sliding along a rigid bed. Further,15

for the purpose of this paper we implicitly define the upper surface by the condition
n(s)
z > 0, and the basal surface by n(b)

z < 0. We have chosen to use this commonly
1757
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used configuration since there is a great variety of possible configurations and
boundary conditions, and it is impossible to deal with them all. The Stokes model
itself is of course entirely general. In the next Section we shall indicate how to
generalize to a moving and possibly melting basal surface, as at the base of a
floating ice shelf.5

3 Generalizing the basal boundary condition

So far we have assumed a fixed and rigid basal surface specified by z = zb (x,y). In
such a case the no-penetration condition, Eq. (12), is given by

w (b) =u(b)
(i )

∂zb

∂x(i )
. (16)

More generally, for a moving material surface (i.e., a Lagrangian surface with no10

inflowing or outflowing flux due to a gain or loss of mass crossing the surface) and
specified by z= zb (x,y,t), we have

w (b) =
∂zb

∂t
+u(i )

∂zb

∂x(i )
. (17)

In addition, assuming an outward flux of mass leaving the ice sheet at the basal
surface with a normal velocity of magnitude un, which may be due to melting, ablation,15

etc., we obtain

w (b) =w (b)
n +u(i )

∂zb

∂x(i )
, (18)

where w (b)
n = ∂zb

/
∂t−un

√
1+
(
∂zb
/
∂x
)2+(∂zb

/
∂y
)2

is the effective net basal ver-
tical velocity due to both the motion of the interface and an outflowing mass flux.
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Integrating the continuity equation, Eq. (10), in the vertical direction with Eq. (18) as
the boundary condition, and using Leibniz’s theorem, the vertical velocity is given by

w =w (b)
n − ∂

∂x(i )

∫ z
zb

u(i )dz
′. (19)

This corresponds to the relation w =w
(
u(i )
)

referred to earlier. In general, and in

particular at the base of a floating ice shelf, we might expect that w (b)
n 6= 0. For our5

present purpose, however, we assume that it is a given quantity. In general, therefore,
the velocity w (b)

n is unknown and must be determined by the simultaneous solution of
the ice sheet problem and the external environment.

We note that w (b)
n will effectively vanish along certain sections of the ice sheet basal

surface (i.e., when the ice sheet is sliding in contact with a fixed and rigid bed) and10

have nonzero values elsewhere. It may therefore be considered as a general function
of the horizontal position vector x(i ) over the entire basal surface. Similarly, the friction
coefficient β may be considered as a function of horizontal position over the entire basal
surface, vanishing when the ice sheet is no longer in contact with the bed. This way,
the surface integral in Eq. (4) may be extended over the entire basal surface without15

loss of generality. However, in general we expect that β is zero when w (b)
n is nonzero

and vice versa, so that βw (b)
n = 0. In the following, we shall assume this to be true,

while leaving open the possibility of exceptions under unusual circumstances.

4 The reformulated action principle

As discussed in Sect. 1, the Lagrangian multipliers P and Λ are no longer needed if20

the vertical velocity given by Eq. (19) is used in the action functional, Eq. (4). This is
because the three-dimensional velocity field, given by the horizontal velocity compo-
nents and the vertical velocity from Eq. (19), already satisfies the continuity equation,
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Eq. (10), and the correct basal boundary condition, Eq. (18). Substituting this velocity
field into Eq. (5), the action, Eq. (4), now becomes a function of horizontal velocity only,

ARS
[
u(i )
]
=
∫
V
dV
[
Gn

(
ε̇2

RS

)
+ρgw

(
u(i )
)]

−
∫
S (b)

dS Σ′′′
j

(
u(b)
)
n(b)
j , (20)

where

ε̇2
RS =

(∂u
∂x

)2
+
(
∂v
∂y

)2
+
(
∂u
∂x +

∂v
∂y

)2
+ 1

2

(
∂u
∂y +

∂v
∂x

)2

+1
2

[(
∂u
∂z +

∂w(u(i ))
∂x

)2

+
(

∂v
∂z +

∂w(u(i ))
∂y

)2
]
,

(21)5

w
(
u(i )
)
=w (b)

n − ∂
∂x(i )

∫ z
zb

u(i )dz
′, (22)

Σ′′′
j

(
u(b)
)
n(b)
j =−1

2
β

u(b)
(i ) u

(b)
(i ) +

(
w (b)
n +u(b)

(i )

∂zb

∂x(i )

)2
, (23)

and note that we have made use of Eqs. (18) and (19). The subscript RS stands for
“Reformulated Stokes”. Observe that ε̇2

RS = ε̇2 for any velocity field that satisfies the
full Stokes equations, the continuity equation, and boundary condition, Eq. (18). In10

general, the term involving w (b)
n vanishes in Eq. (23) because of our assumption that

βw (b)
n =0. As shown in Appendix A, the gravitational term in Eq. (20) may be expanded

and simplified, as follows∫
V
dV w

(
u(i )
)
=
∫
V
dV

[
u(i )

∂zs

∂x(i )
+u(b)

(i )

∂zb

∂x(i )

]
−
∫
S (b)

n(b)
(i ) dS (zs−zb)u(b)

(i ) +
∫
V
dV w (b)

n . (24)

Note that the last term on the right hand side is independent of u(i ); as such, it does15

not participate in the variational principle and so may be omitted. Substituting into
1760
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Eq. (20), the action takes the following alternative and equivalent form,

A′
RS

[
u(i )
]
=
∫
V
dV

[
Gn

(
ε̇2

RS

)
+ρg

(
u(i )

∂zs

∂x(i )
+u(b)

(i )

∂zb

∂x(i )

)]
−
∫
S (b)

dS
[
Σ′′′
j

(
u(b)
)
n(b)
j +ρg(zs−zb)n(b)

(i ) u
(b)
(i )

]
. (25)

This functional (excluding the gravitational terms which are responsible for the forcing
only) is a positive-definite quantity, as alluded to previously, in contrast to the stan-5

dard Stokes functional. Therefore, the variational principle is now a true minimiza-
tion problem subject to gravitational forcing, just as in the Blatter-Pattyn approximate
model. Also, this is a three-dimensional problem in only two variables, i.e., the two
horizontal velocity components, again as in the Blatter-Pattyn model. Furthermore, all
boundary conditions are automatically and correctly incorporated, including the basal10

no-penetration (or tangential flow) boundary condition, if applicable. Note that this
functional is to be used jointly with Eq. (22) to obtain the complete three-dimensional
velocity field.

The action, Eq. (25), (or Eq. 20, but this alternative is less appealing) is the preferred
starting point for a numerical solution of the problem. This is because the discretization15

of the variational principle applied to Eq. (25) automatically yields a symmetric, positive-
definite matrix problem of reduced rank, analogous to Eq. (2), which is optimal for an
efficient numerical solution, as discussed earlier. Nevertheless, it is also of interest to
obtain the associated partial differential equations, if only to compare them with the
standard Stokes system, Eqs. (9–13). For this we need to derive the associated Euler-20

Lagrange equations, which we do next.
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5 New Euler-Lagrange equations for the reformulated Stokes system

Taking the variation of the action, Eq. (25), as in DPL1, and making use of Eqs. (22)
and (23), we obtain

δA′
RS

=
∫
V
dV δGn

(
ε̇2

RS

)
+
∫
V
dV ρg

(
δu(i )

∂zs

∂x(i )
+δu(b)

(i )

∂zb

∂x(i )

)

+
∫
S (b)

dSδu(b)
(i )

[
βu(b)

(i ) +β

(
w (b)
n +u(b)

(j )

∂zb

∂x(j )

)
∂zb

∂x(i )
−ρg(zs−zb)n(b)

(i )

]
. (26)5

Note that this is linear in the velocity perturbations δu(i ), δu
(b)
(i ) , and implicitly in δu(s)

(i )
also. Recall that the variational principle, i.e., Eq. (8), implies that the variation of the
action, Eq. (26), must vanish for arbitrary velocity perturbations. Therefore, Eq. (26)
must now be manipulated into a form such that the velocity perturbations are linear
multipliers in the integrands. Since the velocity perturbations are arbitrary, the coef-10

ficients multiplying each of the velocity perturbations must vanish, and this gives the
required set of Euler-Lagrange equations and also the associated natural boundary
conditions. The manipulations required to put Eq. (26) into this form are rather compli-
cated. We do this in Appendix A, and obtain

δA′
RS =−

∫
V dV δu(i )

[
∂τ̃(i )j

∂xj
+ ∂

∂x(i )

(∫zs
z dz′

∂τ̃(j )z

∂x(j )

)
− τ̃(s)

(j )zn
(s)
(j )

√
1+ ∂zs

∂x(i )

∂zs
∂x(i )

−ρg ∂zs
∂x(i )

]
+
∫
S (s)dS δu(s)

(i )

(
τ̃(i )jn

(s)
j − τ̃(j )zn

(s)
(j )

∂zs
∂x(i )

−n(s)
(i ) τ̃

(s)
(j )zn

(s)
(j )

√
1+ ∂zs

∂x(i )

∂zs
∂x(i )

)

+
∫
S (b)dS δu(b)

(i )

 τ̃(i )jn
(b)
j +βu(b)

(i ) +
(
βw (b)

n +βu(b)
(j )

∂zb
∂x(j )

+ τ̃(j )zn
(b)
(j )

)
∂zb
∂x(i )

+n(b)
(i ) τ̃

(s)
(j )zn

(s)
(j )

(√
1+ ∂zb

∂x(i )

∂zb
∂x(i )

−
√

1+ ∂zs
∂x(i )

∂zs
∂x(i )

)
,

(27)15
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where

τ̃(i )j =µn(ε̇2
RS

)

2
(

2∂u
∂x +

∂v
∂y

) (
∂u
∂y +

∂v
∂x

) (
∂u
∂z +

∂w(u(i ))
∂x

)
(
∂u
∂y +

∂v
∂x

)
2
(
∂u
∂x +2∂v

∂y

) (
∂v
∂z +

∂w(u(i ))
∂y

)
, (28)

and where Eqs. (21) and (22) define ε̇2
RS and w

(
u(i )
)
, respectively. Thus, the Euler-

Lagrange equations are given by

∂τ̃(i )j

∂xj
+

[
∂

∂x(i )

(∫ zs

z
dz′

∂τ̃(j )z

∂x(j )

)
− τ̃(s)

(j )zn
(s)
(j )

√
1+

∂zs

∂x(i )

∂zs

∂x(i )

]
=ρg

∂zs

∂x(i )
. (29)5

The associated free-stress upper surface boundary condition is

τ̃(i )jn
(s)
j − τ̃(j )zn

(s)
(j )

∂zs

∂x(i )
−
[
n(s)

(i ) τ̃
(s)
(j )zn

(s)
(j )

√
1+

∂zs

∂x(i )

∂zs

∂x(i )

]
=0, (30)

and the generalized basal boundary condition becomes

τ̃(i )jn
(b)
j + βu(b)

(i ) +

[(
βw (b)

n +βu(b)
(j )

∂zb

∂x(j )
+ τ̃(j )zn

(b)
(j )

)
∂zb

∂x(i )

]

+

[
n(b)

(i ) τ̃
(s)
(j )zn

(s)
(j )

(√
1+

∂zb

∂x(i )

∂zb

∂x(i )
−
√

1+
∂zs

∂x(i )

∂zs

∂x(i )

)]
=0. (31)10

As noted earlier, we may set βw (b)
n =0 in Eq. (31) except possibly under unusual cir-

cumstances. These are the partial differential equations and boundary conditions that
constitute the reformulated Stokes problem. The basal boundary conditions include
sliding along a rigid bed as well as a generalized floating boundary condition that may,
for example, include conditions at the base of an ice shelf. The above equations are15

very similar to the corresponding Blatter-Pattyn equations (see DPL1) except for extra
1763
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terms, which we enclose in square brackets for emphasis. These extra terms, in effect,
convert the Blatter-Pattyn model into the full-Stokes problem.

6 Conclusions

We have presented a reformulation of the full Stokes problem for ice sheets that
converts it from the standard constrained minimization formulation in five variables5

(u,v,w,P,Λ) to an unconstrained minimization in only two variables (u,v). This not only
reduces the size of the problem but makes the problem much more tractable numeri-
cally. From the original indefinite “saddle point” problem we obtain a positive-definite
problem amenable to a number of efficient solution techniques. In this respect, the
reformulated problem is similar to the first-order or Blatter-Pattyn approximation for ice10

sheets, but without the associated approximation errors. Note that this development
provides a further example of the usefulness of the fundamental action principle for ice
sheets presented in DPL1 and DPL2.

These properties of the reformulated Stokes system lead to a discrete problem ex-
pected to be much easier to solve. As a result, it might also be expected to be cheaper15

to solve. However, the new system matrix is more complicated and less sparse, as can
be seen from the presence of integrals and (effectively) fourth-order horizontal velocity
derivatives in Eq. (29). It should be noted, however, that the JFNK method of Knoll
and Keyes (2004) will likely be the preferred solution method, in which case only the
functional, Eq. (25), is required (i.e., the system matrix is never actually formed) and so20

only second-order horizontal velocity derivatives are needed. Therefore, it is not obvi-
ous at this point how the computational costs will compare. In any case, this question
is beyond the scope of the present paper and can only be answered when the method
is implemented in practice.
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Appendix A

Preliminaries

We shall be making frequent use of the following two results:

a. interchanging the order of integration,5 ∫ b
a
dx g(z′,x)

∫ x
a
dy h(z′′,y) =

∫ b
a
dy h(z′′,y)

∫ b
y
dx g(z′,x). (A1)

We have introduced dummy variables z′,z′′ as a reminder that variables other
than x,y may be present. A useful special case is given when g

(
z′,x
)
= 1, as

follows∫ b
a
dx
∫ x
a
dy h(z′′,y) =

∫ b
a
dy (b−y)h(z′′,y). (A2)10

b. Leibniz’s Theorem,

∂
∂x

∫ b(x)

a(x)
dy h(z′,x,y) =

∫ b(x)

a(x)
dy

∂h
(
z′,x,y

)
∂x

+h(z′,x,b(x))
∂b(x)

∂x

−h(z′,x,a(x))
∂a(x)

∂x
. (A3)

A1 The gravity term in the initial form of the reformulated action, Eq. (20)

The gravity term in Eq. (20) contributes to the forcing terms in the Stokes equations.15

Leaving out the constant factor ρg and making use of Eq. (22), it may be usefully
simplified as follows∫
V
dV w

(
u(i )
)
=
∫
V
dV w (b)

n −
∫
V
dV

∂
∂x(i )

∫ z
zb

u(i )dz
′, (A4)
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where, making use of Leibniz’s theorem, the last term on the right hand side becomes∫
V
dV

∂
∂x(i )

∫ z
zb

dz′ u(i ) =
∫
A
dA
∫ zs

zb

dz

(
∂

∂x(i )

∫ z
zb

dz′ u(i )

)

=
∫
A
dA
∫ zs

zb

dz
∫ z
zb

dz′
∂u(i )

∂x(i )
−
∫
A
dA
∫ zs

zb

dz u(b)
(i )

∂zb

∂x(i )
. (A5)

Now, making use of Eq. (A2) and temporarily introducing ũi = (u, v, 0)T , an extended
version of u(i ), we have5 ∫
V
dV

∂
∂x(i )

∫ z
zb

dz′ u(i ) =
∫
A
dA
∫ zs

zb

dz

[
(zs−z)

∂u(i )

∂x(i )
−u(b)

(i )

∂zb

∂x(i )

]

=
∫
V
dV

[
(zs−z)

∂ũi

∂xi
−u(b)

(i )

∂zb

∂x(i )

]
. (A6)

Using the chain rule and applying Gauss’ theorem, we finally obtain∫
V
dV

∂
∂x(i )

∫ z
zb

dz′ u(i ) =
∫
V
dV

[
∂ (zs−z)ũi

∂xi
−u(i )

∂zs

∂x(i )
−u(b)

(i )

∂zb

∂x(i )

]

= −
∫
V
dV

[
u(i )

∂zs

∂x(i )
+u(b)

(i )

∂zb

∂x(i )

]
+
∫
S (b)

n(b)
(i ) dS (zs−zb)u(b)

(i ) . (A7)10

This, together with Eq. (A4) may now be used to obtain Eq. (24), and hence the
simpler form of the action, Eq. (25).
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A2 Derivations leading to the Euler-Lagrange equations

There now remain two terms in Eq. (26) that need to be manipulated into the required
form, namely,

I1 =
∫
V
dV δGn

(
ε̇2

RS

)
and I2 =

∫
V
dV ρgδu(b)

(i )

∂zb

∂x(i )
.

The first term, I1, is by far the most complicated and we shall deal with it first. To do5

this we shall temporarily assume that the vertical velocity is an independent variable,
as in the standard Stokes model, and therefore retain a three-dimensional velocity in
the form ui ∈

{
u(i ),w

}
. However, from Eqs. (18) and (19), and noting that δw (b)

n =0, we
have

δw =− ∂
∂x(i )

∫ z
zb

δu(i )dz
′, δw (b) =δu(i )

∂zb

∂x(i )
. (A8)10

Following the procedures in DPL1, we obtain

I1 =
∫
V
dV δGn

(
ε̇2

RS

)
=
∫
V
dV τ̃i j

∂δui

∂xj
= I11+ I12+ I13, (A9)

where

I11 =−
∫
V
dV δui

∂τ̃i j
∂xj

, I12 =
∫
S (s)

dS δu(s)
i τ̃i jn

(s)
j , I13 =

∫
S (b)

dS δu(b)
i τ̃i jn

(b)
j , (A10)

and15

τ̃i j =µn(ε̇2
RS

)


2
(

2∂u
∂x +

∂v
∂y

) (
∂u
∂y +

∂v
∂x

) (∂u
∂z +

∂w
∂x

)(
∂u
∂y +

∂v
∂x

)
2
(
∂u
∂x +2∂v

∂y

) (
∂v
∂z +

∂w
∂y

)
(∂u
∂z +

∂w
∂x

) (
∂v
∂z +

∂w
∂y

)
0

. (A11)
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The basal surface integral I13 is the simplest; where, making use of Eq. (A8), it may
be rewritten as follows

I13 =
∫
S (b)

dS δu(b)
(i ) τ̃(i )jn

(b)
j +

∫
S (b)

dS δw (b) τ̃(j )zn
(b)
(j )

=
∫
S (b)

dS δu(b)
(i )

(
τ̃(i )jn

(b)
j +

∂zb

∂x(i )
τ̃(j )zn

(b)
(j )

)
. (A12)

The upper surface integral I12 is more complicated. It may be expanded and rewritten5

as follows

I12 =
∫
S (s)

dS δu(s)
(i ) τ̃(i )jn

(s)
j + I121. (A13)

Making use of Leibniz’s theorem and Eq. (A8), the integral I121 becomes

I121 =
∫
S (s)

dS δw (s) τ̃(j )zn
(s)
(j )

= −
∫
S (s)

dS τ̃(j )zn
(s)
(j )

(∫ zs

zb

dz′
∂δu(i )

∂x(i )
+δu(s)

(i )

∂zs

∂x(i )
−δu(b)

(i )

∂zb

∂x(i )

)
10

= −
∫
S (s)

dS δu(s)
(i ) τ̃(j )zn

(s)
(j )

∂zs

∂x(i )
+ I1211+ I1212, (A14)

where

I1211 =−
∫
S (s)

dS τ̃(j )zn
(s)
(j )

∫ zs

zb

dz′
∂δu(i )

∂x(i )
, I1212 =

∫
S (s)

dS δu(b)
(i ) τ̃(j )zn

(s)
(j )

∂zb

∂x(i )
. (A15)

Finally, the volume integral I11 becomes
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I11 = −
∫
V
dV δu(i )

∂τ̃(i )j

∂xj
−
∫
V
dV δw

∂τ̃(j )z

∂x(j )

= −
∫
V
dV δu(i )

∂τ̃(i )j

∂xj
+
∫
V
dV

(
∂

∂x(i )

∫ z
zb

δu(i )dz
′
)

∂τ̃(j )z

∂x(j )

= −
∫
V
dV

(
δu(i )

∂τ̃(i )j

∂xj
+δu(b)

(i )

∂zb

∂x(i )

∂τ̃(j )z

∂x(j )

)
+
∫
V
dV

(∫ z
zb

∂δu(i )

∂x(i )
dz′
)

∂τ̃(j )z

∂x(j )

= −
∫
V
dV δu(i )

∂τ̃(i )j

∂xj
+ I111+ I112, (A16)

where again we have used Leibniz’s theorem and Eq. (A8), and where5

I111 =−
∫
V
dV δu(b)

(i )

∂zb

∂x(i )

∂τ̃(j )z

∂x(j )
, I112 =

∫
V
dV

(∫ z
zb

∂δu(i )

∂x(i )
dz′
)

∂τ̃(j )z

∂x(j )
. (A17)

The last integral, I112, may be put in the appropriate form by interchanging the order
of integration, as follows

I112 =
∫
A
dA

[∫ zs

zb

dz
∂τ̃(j )z

∂x(j )

(∫ z
zb

dz′
∂δu(i )

∂x(i )

)]
=
∫
A
dA

[∫ zs

zb

dz
∂δu(i )

∂x(i )

(∫ zs

z
dz′

∂τ̃(j )z

∂x(j )

)]

=
∫
V
dV

∂δu(i )

∂x(i )

(∫ zs

z
dz′

∂τ̃(j )z

∂x(j )

)
. (A18)10

Now, temporarily expressing the velocity perturbation as a three-dimensional vector,
δuj = (δu,δv,0)T , and applying Gauss’ theorem, we obtain
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I112 =
∫
V
dV

∂δuj

∂xj

(∫ zs

z
dz′

∂τ̃(i )z

∂x(i )

)

=
∫
V
dV

∂
∂xj

(
δuj

∫ zs

z
dz′

∂τ̃(i )z

∂x(i )

)
−
∫
V
dV δuj

∂
∂xj

(∫ zs

z
dz′

∂τ̃(i )z

∂x(i )

)

=
∫
S (b)

dS δu(b)
(j )n

(b)
(j )

∫ zs

zb

dz′
∂τ̃(i )z

∂x(i )
−
∫
V
dV δu(j )

∂
∂x(j )

(∫ zs

z
dz′

∂τ̃(i )z

∂x(i )

)
. (A19)

Note that integrals I2 and I111 are basically of the same form. Combining them, and

noting from Eq. (15) that ∂zb
/
∂x(i ) =n(b)

(i )

√
1+∂zb

/
∂x(i )∂zb

/
∂x(i ), we obtain5

I3 = I2+ I111 =
∫
V
dV δu(b)

(i )

(
ρg−

∂τ̃(j )z

∂x(j )

)
∂zb

∂x(i )

=
∫
V
dV n(b)

(i ) δu
(b)
(i )

(
ρg−

∂τ̃(j )z

∂x(j )

)√
1+

∂zb

∂x(i )

∂zb

∂x(i )

=
∫ zs

zb

dz
∫
A
dAn(b)

(i ) δu
(b)
(i )

(
ρg−

∂τ̃(j )z

∂x(j )

)√
1+

∂zb

∂x(i )

∂zb

∂x(i )
. (A20)

Now, noting that dS = dA
√

1+∂zb
/
∂x(i )∂zb

/
∂x(i ) on the basal surface, and carry-

ing through the integration with respect to z, this takes the final form10

I3 =
∫ zs

zb

dz
∫
S (b)

dS n(b)
(i ) δu

(b)
(i )

(
ρg−

∂τ̃(j )z

∂x(j )

)

=
∫
S (b)

dS δu(b)
(i ) n

(b)
(i )

(
ρg(zs−zb)−

∫ zs

zb

dz
∂τ̃(j )z

∂x(j )

)
. (A21)
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There are only two integrals left, I111 and I112. Converting from ∂zb
/
∂x(i ) to n(b)

(i ) , as
before, we obtain

I112 =
∫
S (s)

dS δu(b)
(i ) τ̃(j )zn

(s)
(j )

∂zb

∂x(i )
=
∫
S (b)

dS n(b)
(i ) δu

(b)
(i ) τ̃

(s)
(j )zn

(s)
(j )

√
1+

∂zb

∂x(i )

∂zb

∂x(i )
, (A22)

where, since the integrand is a function of horizontal position x(i )only, it is permissible
to switch the surface of integration from the upper to the basal surface. For the last5

integral, making use of the fact that dS = dA
√

1+∂zs
/
∂x(i )∂zs

/
∂x(i ) on the upper

surface, we have

I111 = −
∫
S (s)

dS τ̃(s)
(j )zn

(s)
(j )

∫ zs

zb

dz′
∂δu(i )

∂x(i )

= −
∫
A
dA τ̃(s)

(j )zn
(s)
(j )

√
1+

∂zs

∂x(i )

∂zs

∂x(i )

∫ zs

zb

dz′
∂δu(i )

∂x(i )

= −
∫
V
dV τ̃(s)

(j )zn
(s)
(j )

√
1+

∂zs

∂x(i )

∂zs

∂x(i )

∂δu(i )

∂x(i )
. (A23)10

Now, applying the chain rule and Gauss’ theorem, we obtain the final form,

I111 = −
∫
V
dV

∂
∂x(i )

(
δu(i )τ̃

(s)
(j )zn

(s)
(j )

√
1+

∂zs

∂x(i )

∂zs

∂x(i )

)

+
∫
V
dV δu(i )

∂
∂x(i )

(
τ̃(s)

(j )zn
(s)
(j )

√
1+

∂zs

∂x(i )

∂zs

∂x(i )

)

= −
∫
S (s)

dS n(s)
(i )δu

(s)
(i ) τ̃

(s)
(j )zn

(s)
(j )

√
1+

∂zs

∂x(i )

∂zs

∂x(i )
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−
∫
S (b)

dS n(b)
(i ) δu

(b)
(i ) τ̃

(s)
(j )zn

(s)
(j )

√
1+

∂zs

∂x(i )

∂zs

∂x(i )

+
∫
V
dV δu(i )

∂
∂x(i )

(
τ̃(s)

(j )zn
(s)
(j )

√
1+

∂zs

∂x(i )

∂zs

∂x(i )

)
. (A24)

Since everything is now in the required form, we may combine Eqs. (A9–A24) to
obtain Eq. (27) in Sect. 5.
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Fig. 1. A schematic diagram of the simplified ice sheet configuration discussed in Sect. 2.
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